Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Virol ; 97(6): e0068923, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-20245290

ABSTRACT

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Subject(s)
Coronavirus Infections , Goblet Cells , Receptors, Notch , Swine Diseases , Animals , Coronavirus , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Goblet Cells/cytology , Signal Transduction , Swine , Swine Diseases/pathology , Swine Diseases/virology , Stem Cells/cytology , Cell Differentiation , Receptors, Notch/metabolism
2.
J Virol ; 96(18): e0096222, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2137410

ABSTRACT

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Subject(s)
Stem Cells , Transmissible gastroenteritis virus , Animals , Cyclin D1/metabolism , Interferons/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/virology , Matrix Metalloproteinase 7 , Stem Cells/cytology , Stem Cells/virology , Swine , Transmissible gastroenteritis virus/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL